로그인 바로가기
하위 메뉴 바로가기
본문 바로가기
검색
로그인 / 회원가입
Bayesian Deep Learning
최성준
공유하기
URL복사
밴드
페이스북
트위터
Bayesian Deep Learning
Bayesian Deep Learning
http://www.boostcourse.org/bayesiandeeplearning/lecture/25284/
좋아요
583
수강생
5894
전체 메뉴 열기
하위 메뉴
강의목록
강좌 전체목록보기
CHAPTER 1. Elementary of mathematics
Introduction
Set theory
Measure theory
Probability
Random variable
Random process
Functional analysis
CHAPTER 2. Gaussian process
Introduction
Gaussian process
Weight space view
Function space view
Gaussian process latent variable model (GPLVM)
Gaussian process Application : 최성준님 연구 소개
CHAPTER 3. Bayesian deep neural network (1)
Introduction
Minimizing the Description Length
Ensemble Learning in Bayesian Neural Network
Practical variational inference
Bayes by backprop (BBB)
CHAPTER 4. Bayesian deep neural network (2)
Summary of Variational Inference
Dropout as a Bayesian Approximation
Stein Variational Gradient Descent
CHAPTER 5. Summary
Summary
CHAPTER 6. Uncertainties in Deep Learning
Introduction
Uncertainty in Deep Learning
Representing Inferential Uncertainty through Sampling
Bayesian Uncertainty Estimation
Predictive Uncertainty Estimation using Deep Ensembles
Uncertainties in Bayesian Deep Learning for Computer Vision
Uncertainty -Aware Reinforcement Learning
Safe Visual Navigation via Deep Learning
Uncertainty-Aware Learning using Mixture Density Networks
공지게시판
Discussion Forum
Summary of Variational Inference
#elbo
#freeenergy
#marginallikelihood
#summary
#variational
#variationalinference
#최성준
공유하기
URL복사
밴드
페이스북
트위터
Summary of Variational Inference - 커넥트재단
Summary of Variational Inference - 커넥트재단
좋아요 11
연관 토론
페이지 이동
First
이전
다음
Last
수강완료
수강이 완료되었습니다.
닫기
수강이 완료되었습니다.
이제
다음 강의
를 확인하세요.
닫기
닫기
Bayes by backprop (BBB)
Dropout as a Bayesian Approximation